Může být konvoluce dvou periodických signálů periodická?

Obsah:

Může být konvoluce dvou periodických signálů periodická?
Může být konvoluce dvou periodických signálů periodická?
Anonim

Ano, je to možné. Jakýkoli aperiodický signál může být reprezentován jako periodický signál s periodou 0-2 pi, kde 2 pi je čas, kdy signál přestal být pozorován.

Jakou konvoluci lze provést pro periodické signály?

Kruhová konvoluce, také známá jako cyklická konvoluce, je speciální případ periodické konvoluce, což je konvoluce dvou periodických funkcí, které mají stejnou periodu. Periodická konvoluce vzniká například v souvislosti s Fourierovou transformací v diskrétním čase (DTFT).

Jaký je výsledek periodické konvoluce signálů?

Vysvětlení: Toto je velmi důležitá vlastnost spojité časové Fourierovy řady, vede k závěru, že výsledkem periodické konvoluce je násobení signálů ve frekvenční doméně.

Proč se lineární konvoluce nazývá periodická konvoluce?

Nazývají se periodické konvoluční součty. Vzhledem k nekonečné podpoře periodických signálů konvoluční součet periodických signálů neexistuje-nebyl by konečný. Periodická konvoluce se provádí pouze po dobu periodických signálů stejné základní periody.

Jak vypočítáte periodickou konvoluci?

f[n]⊛g[n] je kruhová konvoluce (Sekce 7.5) dvou periodických signálů a je ekvivalentní konvoluci přes jedeninterval, tj. f[n]⊛g[n]=N∑n=0N∑η=0f[η]g[n−η]. Kruhová konvoluce v časové oblasti je ekvivalentní násobení Fourierových koeficientů.

Doporučuje: